零售业步入新纪元 数据智能如何让其露出“价值冰山”
作者:媒体转发 时间:2018-10-06 01:05

过去两年,零售这个古老而传统的行业被推到了技术革新的风口浪尖。这场变革为何来得如此突然?背后的推动力又是什么?这是TalkingData合伙人&执行副总裁林逸飞和同行们反复探讨的话题。
零售领域正在孕育产业级的机会
其中被提及最多的,就是线上流量见顶。互联网巨头们开始转战线下,给传统大型零售企业造成了巨大的压力。这种压力催生了大型零售企业对移动化、数字化和对接线上流量的诉求。他们面临着两个选择,要么更加全面深入地倒向腾讯、阿里,要么在二者的夹缝中建立自己的流量和数据运营能力。
电商崛起也曾给线下零售造成过冲击,但远不如今天来得剧烈,加之当时技术成本太高,未能成功激发零售行业的技术革新。今天移动终端大规模普及,移动网络的获取成本、支付和流量的对接成本急剧下降,为零售企业建立自己的数字化能力创造了可能性。
与此同时,以今日头条、陌陌为代表的腰部流量开始更大程度地向市场释放数据化能力,零售企业需要建立相应的平台去承接。
TalkingData就是在这样的背景下切入零售市场的。TalkingData成立于2011年,是国内领先的第三方数据智能服务商。近7年的时间,TalkingData始终保持每年3倍的业务增长。切入零售市场至今的两年半时间里,零售业务版块的发展更是迅猛无比。
林逸飞认为,当微信这种十亿日活级别的平台开始释放流量和数据,须有零售这样庞大的市场才能承接。因此未来3-5年,零售领域将出现产业级和现象级的机会。他表示,TalkingData将在这一领域投入更多的人力和资源,以抓住行业变革的红利。
零售数据的“三重门”
大数据在零售行业的应用由来已久,“啤酒尿布”的故事曾经广为流传。但今天零售行业的大数据分析和当年相比已经发生了非常大的变化。
林逸飞介绍,零售行业的大数据有几个特点:首先,和金融、保险等行业相比,零售业对数据运营的精细化程度要求更高;其次,零售行业对接的流量和数据变化非常剧烈,比如小程序,两个月就能做到1.2亿日活,企业的对接平台必须足够灵活才能抓住这样的流量红利;最后,零售行业非常分散,一个垂直板块里就有少则几十家、多则几百家企业。
零售数据的维度也在不断增加。两三年前,TalkingData提出了数据“三重门”的概念,即交易门、交互门和公开市场门。“啤酒尿布”的故事只用到了“交易门”里的交易数据,它更多是一种事后推演。而今天,随着智能终端大规模应用,企业可以非常便捷地通过APP、社交网络等触点大规模采集用户的交互数据。传统零售经常提“人货场”,今天通过“交互门”里的数据我们还能在此基础上增加时间的维度,帮助零售商抓住营销的最佳时机。
“公开市场门”指的是客户在开放市场中的各种行为数据,这些数据本身往往并不与企业业务直接相关,但是可以很大程度上辅助企业开展业务,如移动App的数据、社交数据、微信微博的舆情数据等。
公开数据的获取并不是盲目的,需要以解决某些业务问题为出发点,否则会陷入“数据的汪洋大海”,反而不知道该收集什么样的数据。
不久前,TalkingData与腾讯云联合打造的大数据选址应用——智选,就是利用公开数据的绝佳范例。凭借双方强大的数据能力,“智选”可以帮助零售企业解决线下实体门店选址、商圈运营诊断等问题。以前费时费力的选址工作,借助“智选”只需几分钟即可通过可视化、数据化的方法快速做出决策。
林逸飞介绍,腾讯云就像一个基础数据加工厂,拥有丰富的原材料。而TalkingData离客户更近,知道如何用算法模型解决客户的实际问题,“我们做的是数据的精加工”。
如何萃取数据的商业价值是核心竞争点
当数据获取变得简单,数据维度不断增加,从数据中萃取商业价值的能力就成了企业的核心竞争点。
与交易数据不同,交互数据和公开数据是完全非结构化、高流量且时序紊乱的,数据之间天生不打通。这使得数据处理的底层技术发生了巨大变化,数据仓库等传统技术因无法应对现时流量的多波段变化,已经退居到了大企业的后台系统。
现阶段需要处理的数据维度之多,已完全超出了人力所及的范畴。以TalkingData服务的某餐饮连锁品牌为例,该品牌SKU数量不多,只有大约100个,但它在全国有数千家门店。TalkingData的目标是帮助其在营销端做到千店千面,在供应链端做到提前一天准确预测出第二天以小时为单位的客流量、原材料消耗数,以减少原材料损耗。为实现这一目标,TalkingData需要建立数十万个模型。如此多的模型不可能由人力进行调参,必须通过数据做自适应训练。




