能识别“假笑”的人工智能,离我们还有多远?
作者:媒体转发 时间:2018-08-04 09:31
据最新的一项调查,世界人民三观并不一定相同,但在识别“假笑”这件事儿上却基本上都能做到。不管身处哪个国家,人们基本上都能更好地分辨出笑声到底是真的还是假的。
这是因为自然笑容的肌肉、声音和硬挤出来的笑容肌肉、声音是截然不同的,比如紧绷度和流畅度。打个比方,你很容易看出来“假笑男孩”是在“假笑”。

那么,既然人能识别“假笑”,那机器能不能做到?或者说,以目前的技术发展水平来说,人工智能是否可以通过识别技术来对人进行情绪识别进而做出相应的反应呢?
我们知道,目前人工智能最成熟的应用之一就是图像和语音识别,其已经广泛应用到拍照识物、画面增强、人机交互等各种领域。但显而易见的是,目前其很大程度上还是处于识别和归类的层面,想要透过表层的识别去进行深层的情绪认识和理解,进而优化人机交互的体验,尚需时日。
但这并不代表人们对人工智能情绪识别的望尘莫及。作为对人的表层识别的深层次延伸,情绪识别带来的变化将是非常积极的。那么,如今的人工智能情绪识别到底发展怎样?它离进入我们的现实生活,到底还有多远?
情绪大都一样,手法各有不同我们知道,人的情绪体现是多方面的。表情、语言、动作等,都可以作为人类表达情绪的载体。不同的情绪会以不同的形式体现出来,比如一个人开心的话就会笑,嘴巴两边向上翘起,眼角也会微翘;如果特别开心的话,会“哈哈”大笑。那么,很多研究者就抓住各种情绪对应的表情或动作,来对机器进行训练和学习。
可以说,凡是能反映情绪的地方,都已经被研究者们翻遍了。
眼球转动分析个性。民科对眼球转动体现人的心理活动早就有过一些总结,比如兴奋的时候两眼放光,沮丧的时候两眼无光,悲伤的时候瞳孔无神,愤怒的时候怒目圆睁等等。还有人认为眼球向左上方看是说谎,右上方看则是思考。无论科学与否,其总归是证明眼球对判断人的性格、情绪是由一定的作用的。

比如最近由德国斯图加特大学、澳大利亚弗林德斯大学和南澳大利亚大学的研究人员组成的团队就开发出了一种机器学习算法,其通过对系统进行大量的训练,调查了42位受试者日常生活中的眼球转动情况,然后去评估性格特征。比如该算法可以显示关于个人的交际能力、好奇心等,并且能与识别出大五人格中的四种。那么,能从总体上来判断一个人的性格,某种程度上就缩小了需要识别的情绪的范围。
微表情分析。很多情况下,人的情绪并不是大起大落的,所以情绪更多的是从微表情上体现出来,比如动动嘴角、眨眨眼睛。比如翻眼珠的动作可能会表示不屑一顾。因此,作为与情绪直接相关的一部分,关于微表情的研究成为众多公司竞相上马的项目。
最近麻省理工就通过机器学习来捕捉面部表情的细微变化,从而衡量一个人的心理感受。通过把18段视频分解为一帧一帧的图片,模型可以通过学习来获得相应表情背后的情绪。最主要的是,它有别于传统表情识别的一刀切,可以根据需要进行重新训练,具有高度的个体适用性。
语言表现分析。除了观色之外,判断人的情绪的另一个直观方法就是“察言”。比如说话声音的高低、打字速度的快慢等等。

日本软银公司的情感机器人pepper,其搭载的摄像头让其具备表情识别的功能,同时又可以基于云端的语音识别来实现对人说话的语调识别,从而获取人的说话情绪,来实现其所标榜的“情感机器人”的功能。同时,IBM开发的能感知情感的在线客服系统,也可以通过学习识别藏在语法、打字速度中的人的情绪,类似的对话式情感识别人工智能还有微软的小冰等。
除此之外,结合可穿戴设备来获取人的脉搏频率等体征也将有助于情感的获得。总之,在人脸识别、语音识别、传感器和各种数据算法的加持下,人工智能识别情绪看起来呈现出欣欣向荣的态势。
研究者的“小山头”,或是情绪识别“笨笨的”之因然而,我们从以上的研究现状当中可以看到比较明显的研究特点。


