相关不等于因果,深度学习让AI问出“十万个为什么”
作者:CQITer小编 时间:2019-08-27 16:50
编译:张大笔茹
生活经验告诉我们,相关关系并不能直接推导出因果关系,但不管是日常生活还是学术研究,对于因果关系的解释要远比相关关系重要得多。很多时候,我们也会对事件之间的因果关系捉襟见肘。
如果,把这个过程交给AI来处理会怎样呢?
AI可以利用深度学习技术来构建相关关系模型。但是,用于确定事情发生原因的因果深度学习目前仍处于起步阶段,而且它的自动化比普通神经网络也困难许多。
大部分AI都是通过分析大量数据寻找其中隐藏的规律。全球IT服务公司L&T Infotech的执行副总裁兼首席数据分析官苏门德拉·莫汉蒂(Soumendra Mohanty)表示,“显然,这能使我们能了解到‘是什么’,但却很少能理解‘为什么’”。
这个区别的影响是很大的。建造人工智能的最终目的是训练AI回答为什么这个因素会影响那个因素,这就是许多研究人员现在将注意力转向这儿的原因。
加州大学洛杉矶分校的教授朱迪亚·珀尔(Judea Pearl)的关于实施贝叶斯网络统计分析的研究取得重要成绩,他在开发一个可以在可计算框架中区分事件原因的、用于绘制因果关系图的框架。
分析因果关系的最大挑战之一是通过专家判断一件事情的原因,此为主观意见,然后再通过各种分析技术将其分开。这与统计机器学习所追求的“客观”形成鲜明对比。长远来看,因果关系研究可以帮助我们更好地理解世界;短期内,因果分析也可以更好地解释机器学习模型的结果。
不再期待AI奇迹般地预测未来
Information Builders营销副总裁杰克·弗赖瓦尔德(Jake Freivald)说:“商业精英通常不相信黑盒子技术,但他们却对人工智能技术有着异乎寻常的期待。”他表示,企业家意识到将业务流程交给人工智能算法可能就像让他们两岁的孩子驾驶自己的汽车一样冒险。
问题在于,分析型AI主要用于查找数据集中的相关性,而相关性仅仅能暗示因果关系,无法准确解释事情为什么发生。相关性只能告诉你接下来可能会发生什么。
“我们越能在模型中梳理出因果关系,就越能在现实基础上准确评估事情发生的原因以及接下来会发生什么,”弗雷瓦德说,“只有到那时,将业务交给人工智能就可以很好地完成工作。否则,结果可能是灾难性的。”

不再仅仅是拟合曲线
拟合曲线在回答诸如“下一个最佳报价是什么?”、“这会是诈骗吗?” 或者“它是猫吗?”这类问题上表现出色。
“但现实世界中,很多问题是无法仅通过曲线拟合度解决的,”莫汉蒂说。如果几个因素都可以预测产品偏好,那企业应该选择哪些因素以及如何确定其重要性顺序呢?简单地将不同变量按强度排列与独立选择一些因素并单独评估其对预测结果的贡献程度的结果是不同的。
“我们可以观察相关性,但并不能证明甚至解释因果关系,”莫汉蒂说。因果关系回答的是“我应该采取什么行动才能实现改变?”或“如果我改变模型的一些基本假设会怎样?”
因果深度学习技术(又称结构方程模型SEM)已存在多年了。然而,这些技术或多或少地局限于学术研究,目前还没有应用到商业领域。
蒙特卡罗模拟,马尔可夫链分析,朴素贝叶斯和随机建模是当今常用的一些技术,但它们几乎都不能分析因果关系。还有一些开源软件包,如DAGitty(一个基于浏览器的环境,用于创建,编辑和分析因果模型以及Microsoft的DoWhy库的软件包)也用于因果推理。但这些仍在发展中。
自动库存管理系统的制造商Pinsa Systems的首席执行官兼总裁理查德·施瓦茨(Richard Schwartz)表示,在整体上看,AI应用程序会根据其观察到的模式执行一系列操作。深度学习使用统计技术来发现规律。在AI中嵌入因果理解的不同方法需要开发基于规则的系统。这种系统可以从其他类型的客观事实中得出结论,例如“右转三次等同于左转”。
规则可以是因果关系或认知关系,它们有助于根据输入对结果进行建模,但它们也有缺点:“因果规则很难界定的,明确定义往往更难。”




