10个可以快速用Python进行数据分析的小技巧

作者:网友投稿 时间:2019-06-23 21:47

字号

编译:小七、蒋宝尚

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行探索性数据分析

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

10个可以快速用Python进行数据分析的小技巧

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

1. 安装

用pip安装或者用conda安装

pip install pandas-profiling 

 conda install -c anaconda pandas-profiling 

2. 用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages 

 import pandas as pd 

 import pandas_profiling 

df = pd.read_csv('titanic/train.csv') 

 pandas_profiling.ProfileReport(df) 

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

10个可以快速用Python进行数据分析的小技巧

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df) 

profile.to_file(outputfile="Titanic data profiling.html"

10个可以快速用Python进行数据分析的小技巧

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

1. 安装

pip install plotly 

# Plotly is a pre-requisite before installing cufflinks 

pip install cufflinks 

2. 用法

#importing Pandas  

 import pandas as pd 

 #importing plotly and cufflinks in offline mode 

 import cufflinks as cf 

import plotly.offline 

 cf.go_offline() 

 cf.set_config_file(offline=Falseworld_readable=True

是时候展示泰坦尼克号数据集的魔力了。

df.iplot() 

10个可以快速用Python进行数据分析的小技巧

10个可以快速用Python进行数据分析的小技巧

df.iplot() vs df.plot() 

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

10个可以快速用Python进行数据分析的小技巧

所有可用的Magic命令列表

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接