抢人大战中,那些选择留在高校的AI研究员们
作者:媒体转发 时间:2019-05-20 21:24
AI人才需求的不断增长, 为科研人员在学术机构和商业公司间跨界工作创造机会。越来越多的人工智能研究员决定从科研机构跳槽到商业公司,吸引他们的不仅是高薪,还有科研机构所不具备的大型数据集和计算资源。
加拿大蒙特利尔的软件提供商Element AI在4月份发布的一份报告显示,在过去一年中, LinkedIn上具有人工智能专业知识的博士毕业生人数增加了66%。在顶级机器学习会议上发表文章的研究人员数量增加了19%。
报告链接:
3月份,泰晤士报和微软共同发布的报告表示,在一项针对111名AI研究人员和大学管理人员的调查中,89%的人表示聘用和留住AI专家“很难”或“非常困难”,招聘狂潮正在影响AI教职人员的招聘。
马萨诸塞州伍斯特理工学院的计算机科学家Craig Wills分析了2019年409个主要在美国的机构发布的终身职位制(tenure-track)计算机科学教师招聘广告。
研究发现,自2015年以来,招聘人工智能,数据挖掘和机器学习专家的广告比例大致翻了一番。在早些时候发布的对176所院校进行的一项研究里,Wills发现42%的美国顶尖研究生院未能如期招到所需数量的计算机科学教师,然而,AI相关的职位需求每天都在增加。
报告链接:
https://cra.org/crn/2018/08/2018-computer-science-tenure-track-faculty-hiring-outcomes/
面对企业与高校的抢人大战,四位AI研究员与Nature 分享了他们的故事,例如:Gireeja在工作之后选择重返高校教书;Sameer在企业和高校身兼两职,他们选择留在高校,但也对大学如何留住AI人才提出自己的看法。 面对全球范围内的AI博士毕业生递增和教职人员难招的情况,我们也邀请了国内两所高校AI领域的博士生分享了他们的观点。
文摘菌整理如下:
Gireeja Ranade:工作中积累的经验,希望可以传授给我的学生
在加州大学伯克利分校获得电子工程和计算机科学博士学位后,我继续攻读博士后,然后在华盛顿州雷蒙德市的微软研究院担任全职研究员。在微软工作的经历让我从理论走向实践,这使我更加了解产品团队面临的问题和挑战。
例如,我曾参与无人驾驶飞行器(UAV)研究。在本科阶段,我曾进入机器人研究团队,但在博士阶段,我唯一的研究就是定理证明。与无人机研究人员共事期间,我开始思考一些之前从未想过的问题,比如系统安全性问题。如何知道系统何时进入危险区域?如何判断无人机是否会撞到天花板或地板上?
最令我印象深刻的项目之一是研究假新闻和假消息的传播和影响。 微软研究院在用户的许可下收集了他们的网络浏览日志。我们研究了2016年美国总统大选期间的网站访问模式,发现社交媒体在很大程度上推动假消息的传播,还有一类假新闻是通过电子邮件和新闻网站,这类的假消息和新闻的数据是我无法从科研机构中获得的。
去年,我回到伯克利担任助理教授,因为我希望能尽我所能向年轻一代传递知识。在教学过程中,结合我工作的经验,我喜欢把实际案例和课本上的知识结合起来给学生讲课。
Anima Anandkumar:跨界更容易了,建议年轻教师多走出校园

Anima 是加州理工学院的决策,优化和学习联合主任; 也是位于加利福尼亚州圣克拉拉市的NVIDIA公司的机器学习研究主管,负责制造图形处理单元。
许多正在攻读博士学位的学生都对职业选择存在困惑,他们担心自己可能选错了,但现在他们似乎有更多的选择,无论是学术界还是商业公司都对人才表现出了前所未有的渴望,科研机构和公司之间的合作越来越频繁,越来越多的研究人员具有双重职位。
过去,大部分公司没有专门的研究所,想要发表论文也比较困难。 现在,许多公司都有开放式出版政策(open-publication policy),这意味着公司里的研究员可以参与同行评审,从而进入学术界。如果他们在行业已经工作了几年,只要能继续发表论文,想重新回到学术界其实很容易。事实上,拥有工作经验在应聘时是重要的加分项。
我不断听说有资历深的老教师被猎头挖走,年轻教师们困扰于如何提高自己的竞争力。我建议他们走出校园,多访问商业实验室和其他商业机构,保持一定程度的联系。
年轻教师选择研究课题时,不能只考虑行业热点,他们应该看到仍有许多真正重要的基本问题亟需解决。在加州理工学院,我们有一项名为AI4science的项目,该计划的目的是研究AI如何对其他科学产生影响。例如,我们可以开发关于生物学,化学,天文学和材料科学的算法吗?目前,该项目由加州理工学院承办,我们会不定期举办论坛,邀请外部研究人员参加。


