从本体论开始说起——运营商关系图谱的构建及应用

作者:网友投稿 时间:2019-05-14 21:19

字号

人类学家罗宾·邓巴认为:一个人维持紧密人际关系的人数最多为150人。

网络社交平台出现后,很多人认为虚拟世界将突破邓巴这一理论,但实际情况却是:如果要和更多人互动,那么势必需要削弱在其它人身上花的精力。

但是,人际关系将随着时间而产生亲疏远近等不同的变化,如果能够识别出人与人的关系定义,则能为诸多行业领域带来更多方向的探索,如:诈骗团伙识别,通过诈骗分子的通话关系网去识别可能存在的团伙关系,将坏人一网打尽。

本期课堂,联通大数据技术专家闫龙将从“本体论”说起,为大家介绍联通大数据关系图谱的构建与应用。

从本体论开始说起——运营商关系图谱的构建及应用

一、本体论

万维网之父Tim Berners-Lee教授在1998年将语义网络(Semantic web)带入人类的视线。目的是赋予网络理解词语、概念以及它们之间逻辑关系的能力,使人机交互变得更有效率。本体论(Ontology)做为语义网的核心,是研究实体存在及其本质的通用理论。1993年Thomas Gruber教授提出了本体论最广为认同的定义:共享概念模型的明确的形式化规范说明。这里面实际说了四个概念,即:“概念模型”(Conceptualization)指通过客观世界中一些现象的相关概念而得到的模型;“明确”(Explicit)指所使用的概念及其约束都有明确的定义;“形式化”(Formal)指Ontology是计算机可读的;“共享(Share)”指本体论中体现的是共同认可的知识,反映的是相关领域中公认的概念集。

本体论最初是形而上学的一个分支。对于形而上学的理解这里给出一个例子(如:图1)

从本体论开始说起——运营商关系图谱的构建及应用

(图1)

图中中文的“猫”与“猫咪”,英文的“cat”,“猫的图片”都可以用来描述“猫”这个实物。那么在哲学层面,“猫”这样一个实物就是亚里士多德口中的“实体”,巴门尼德口中的“存在”,以及本体论中所说的“本体”。而上图这些描述均指的是“猫”这个“本体”的符号。

从这里,我们能看出“本体”这个概念在哲学层面上是形而上的,是只可意会不可言传的。因此,对于一个实体,所有的描述都是这个“本体”的外在符号,我们感受到的,听到的,看到的,都成为符号到本体的某种映射。

解释完本体哲学层面的意思,我们是否对语义层面的本体有更好的理解呢?其实,其主要目的就是要建立这样一种映射,例如:{“猫”,“猫咪”,“喵咪”,“cat”}这个符号集都映射到“猫”这个“本体”上来。当我们建立了本体的集合,本体间的逻辑关系就是存在的(如:IF A⊆B and B⊆C,THEN A⊆C)。本体的逻辑层提供了公理和推理规则,进而实现相应的逻辑推理,有可能是“属性-本体”的关系,有可能是“子类-本体”的关系,也有可能是“本体-本体”的对立或者是近似关系。本体论最终的目的是去实现知识表达,构建知识库,实现知识推理,即借由本体论中的基本元素:实体与实体间的关联,作为描述真实世界的知识模型。

二、知识图谱

这种知识模型究竟有什么用呢?Google在2012年提出Knowledge Graph,就是为了将传统的keyword-based搜索向基于语义的搜索升级。知识图谱可以用来更好的查询复杂的关联信息,从语义层面理解用户意图,改进搜索质量。这里借用本体的概念给出我个人对知识图谱的理解:知识图谱就是用来描述真实世界中存在的各种实体,以及他们之间的关系,而实体本身会有多样实例,属性。就像之前“猫的例子”(如下图2),当我们查询“喵喵喵喵喵”时,返回的不会是抖音上很红的《学猫叫》,而是“猫”这个实体。同时,在其他知识的补充下我们可以知道“猫”有一个实例是“茄子”,而“茄子”的主人是我,我和小胡都就职于联通大数据,并且通话关系很密切。当我们知识库中的实体、关系、属性、实例等的量级非常大时就能绘制成一个巨型的网络关系拓扑图。有了这样的知识库,搜索引擎就能洞察用户查询背后的语义信息,返回更为精准的信息。换言之,知识图谱引入了更多的含义,对事物进行搜索,像人类一样去思考、联想、关联。这也印证了Google knowledge graph的初衷:“The world is not made of strings , but is made of things.”

从本体论开始说起——运营商关系图谱的构建及应用

(图2)

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接