图文并茂的带你彻底理解悲观锁与乐观锁
作者:媒体转发 时间:2019-05-05 21:22
这是一篇介绍悲观锁和乐观锁的入门文章。旨在让那些不了解悲观锁和乐观锁的小白们弄清楚什么是悲观锁,什么是乐观锁。不同于其他文章,本文会配上相应的图解让大家更容易理解。通过该文,你会学习到如下的知识。

1.锁(Lock)
在介绍悲观锁和乐观锁之前,让我们看一下什么是锁。
锁,在我们生活中随处可见,我们的门上有锁,我们存钱的保险柜上有锁,是用来保护我们财产安全的。
程序中也有锁,当多个线程修改共享变量时,我们可以给修改操作上锁(syncronized)。
当多个用户修改表中同一数据时,我们可以给该行数据上锁(行锁)。因此,锁其实是在并发下控制多个操作的顺序执行,以此来保证数据安全的变动。
并且,锁是一种保证数据安全的机制和手段,而并不是特定于某项技术的。悲观锁和乐观锁亦是如此。本篇介绍的悲观锁和乐观锁是基于数据库层面的。

2.悲观锁
悲观锁(Pessimistic Concurrency Control),第一眼看到它,相信每个人都会想到这是一个悲观的锁。没错,它就是一个悲观的锁。
那这个悲观体现在什么地方呢?悲观是我们人类一种消极的情绪,对应到锁的悲观情绪,悲观锁认为被它保护的数据是极其不安全的,每时每刻都有可能变动,一个事务拿到悲观锁后(可以理解为一个用户),其他任何事务都不能对该数据进行修改,只能等待锁被释放才可以执行。
数据库中的行锁,表锁,读锁,写锁,以及syncronized实现的锁均为悲观锁。

这里再介绍一下什么是数据库的表锁和行锁,以免有的同学对后面悲观锁的实现看不明白。
我们经常使用的数据库是mysql,mysql中最常用的引擎是Innodb,Innodb默认使用的是行锁。而行锁是基于索引的,因此要想加上行锁,在加锁时必须命中索引,否则将使用表锁。

3.乐观锁
与悲观相对应,乐观是我们人类一种积极的情绪。乐观锁(Optimistic Concurrency Control)的“乐观情绪”体现在,它认为数据的变动不会太频繁。因此,它允许多个事务同时对数据进行变动。
但是,乐观不代表不负责,那么怎么去负责多个事务顺序对数据进行修改呢?
乐观锁通常是通过在表中增加一个版本(version)或时间戳(timestamp)来实现,其中,版本最为常用。
事务在从数据库中取数据时,会将该数据的版本也取出来(v1),当事务对数据变动完毕想要将其更新到表中时,会将之前取出的版本v1与数据中最新的版本v2相对比,如果v1=v2,那么说明在数据变动期间,没有其他事务对数据进行修改,此时,就允许事务对表中的数据进行修改,并且修改时version会加1,以此来表明数据已被变动。
如果,v1不等于v2,那么说明数据变动期间,数据被其他事务改动了,此时不允许数据更新到表中,一般的处理办法是通知用户让其重新操作。不同于悲观锁,乐观锁是人为控制的。

4.如何实现
经过上面的学习,我们知道悲观锁和乐观锁是用来控制并发下数据的顺序变动问题的。那么我们就模拟一个需要加锁的场景,来看不加锁会出什么问题,并且怎么利用悲观锁和乐观锁去解决。
场景:A和B用户最近都想吃猪肉脯,于是他们打开了购物网站,并且找到了同一家卖猪肉脯的>店铺。下面是这个店铺的商品表goods结构和表中的数据。

从表中可以看到猪肉脯目前的数量只有1个了。在不加锁的情况下,如果A,B同时下单,就有可能导致超卖。
悲观锁解决
利用悲观锁的解决思路是,我们认为数据修改产生冲突的概率比较大,所以在更新之前,我们显示的对要修改的记录进行加锁,直到自己修改完再释放锁。加锁期间只有自己可以进行读写,其他事务只能读不能写。
A下单前先给猪肉脯这行数据(id=1)加上悲观锁(行锁)。此时这行数据只能A来操作,也就是只有A能买。B想买就必须一直等待。
当A买好后,B再想去买的时候会发现数量已经为0,那么B看到后就会放弃购买。
那么如何给猪肉脯也就是id=1这条数据加上悲观锁锁呢?我们可以通过以下语句给id=1的这行数据加上悲观锁



