马斯克刚骂了激光雷达,这篇用纯视觉代替激光雷达的名校论文「力挺」了他

作者:网友投稿 时间:2019-04-25 01:48

字号

昨天,第 N 次在公开场合 diss 激光雷达的马斯克,再一次让自动驾驶圈对无人车不同的传感器应用方案展开了热议。

实际上,如果站在马斯克的角度,我们其实不难理解他对激光雷达的「痛恨心理」。

毕竟特斯拉是一家面向普通消费者卖车的企业,而不是一家卖自动驾驶技术和解决方案的公司。

在至少 3 年内,无论是从成本、技术可靠性、安全性、美观性甚至是用户对自动驾驶的信任度和品味来看,大多数车企的量产车型,都不会把激光雷达纳入考虑范畴。

当然,根据马斯克说话常常打脸的经典表现来看,或许在几年后他会自己站出来反驳自己坚持的观点。

事实上,在「自动驾驶汽车究竟应该用不用激光雷达」这个问题上长时间的争论不休,衍生出了「激光雷达派」与「纯计算机视觉派」。

目前,一个被激光雷达派以及大众普遍接受的观点是,考虑到纯视觉算法在数据形式和精度上的不足,L3 级以上的自动驾驶乘用车必须要采用激光雷达。

当然,从谷歌 Waymo、通用 Cruise,再到百度阿波罗和国内的 Pony.ai、文远知行等自称 L4 级自动驾驶乘用车解决方案的公司,车顶上的激光雷达一直都非常扎眼。

而「计算机视觉派」的重要组成部分则是自动驾驶技术解决方案初创公司,但这个解决方案到底是多高的级别,其实目前没有确切的定论。

通常情况下,「昂贵的成本」和「技术能力」是众多车企与计算机视觉技术公司反对采用激光雷达的主要理由。

譬如作为一家主打摄像头方案的技术创业公司,2017 年 AutoX 的「炫技首秀」就是让一辆只搭载 7 个摄像头的林肯 MKZ 跑在普通公路的车道上。虽然后来受到了来自激光雷达派的「反击」,其创始人兼 CEO 肖健雄也一直坚持以摄像头为主的传感器方案,

此外,部分高精地图创业公司也强调从成本出发,采用低成本的摄像头方案采集高精数据。

综合来看,截至目前自动驾驶圈内最主流的观点虽然是「该有的,一个都不能少」,但不难看出,做车厂的生意,对于计算机视觉公司来说,暂时性抛开激光雷达是个还不错的主意;

而另一层面,对于计算机视觉工程师来说,想要在高级别自动驾驶解决方案上摆脱激光雷达,就要持续研究和验证纯视觉技术方案替代激光雷达的可行性。

因此,当大家还在围观「马斯克骂激光雷达」时,我们想从机器之心擅长的角度出发,看看能否从技术上来「验证」这个看似不太靠谱的观点。

很凑巧,我们发现了一篇来自康奈尔大学的技术论文,作者中 Yan Wang 与 Wei-Lun Chao 均为华人。该论文提出了一种新方法来缩短纯视觉技术架构与激光雷达间的性能差距。

该论文提出的方法,改变了立体摄像机目标检测系统的 3D 信息呈现形式,甚至将其称之为——伪激光雷达数据(pseudo-LiDAR)。

研究者在挡风玻璃两侧各使用一个相对廉价的摄像机,采用其新方法之后,该摄像机在目标检测方面的性能接近激光雷达,且其成本仅为后者的一小部分。研究者发现以鸟瞰图而不是正视图来分析摄像机捕捉到的图像可以将目标检测准确率提升 2 倍,从而使立体摄像机成为激光雷达的可行替代方案,且其成本相比后者要低很多。

研究主题

可靠和稳健的 3D 目标检测是自动驾驶系统的基础要求。要想避免与行人、骑自行车的人、汽车相撞,自动驾驶汽车必须第一时间检测出它们。

现有的算法严重依赖激光雷达(LiDAR),它可以提供周边环境的准确 3D 点云。尽管激光雷达的准确率很高,但出于以下原因,自动驾驶行业急需激光雷达的替代品:

首先,激光雷达非常昂贵,给自动驾驶硬件增加了大量费用;

其次,过度依赖单个传感器会带来安全风险,在一个传感器出现故障时利用备用传感器是较优的选择。一个自然的选择是来自立体摄像机或单目摄像机的图像。光学相机性价比较高(比激光雷达便宜了多个数量级),且可以高帧率运行,能够提供稠密深度图,而激光雷达信号只有 64 个或 128 个稀疏旋转激光束。

近期的多项研究探索了在 3D 目标检测中使用单目摄像机和立体深度(视差)估计 [19, 13, 32]。但是,目前主要的成果仍然是激光雷达方法的补充。

例如,KITTI 基准上的一个顶尖算法 [17] 使用传感器融合(sensor fusion)将汽车的 3D 平均精度(AP)从激光雷达的 66% 提升到了激光雷达+单目图像的 73%。而在仅使用图像的算法中,当前最优算法的 AP 仅为 10% [30]。

对后者较差性能的一个直观且流行的解释是基于图像的深度估计准确率较低。

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
关键词 >>激光雷达 3D 检测
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接