深度学习果实即将摘尽?11位大牛谈AI的当下(2018)与未来(2019)

作者:网友投稿 时间:2018-12-24 16:49

字号

KDnuggets 向 11 位来自学界和业界不同领域的机器学习和 AI 专家咨询,以期总结出今年的业内进展并预测明年的关键趋势。

KDnuggets 分别获得了来自 Anima Anandkumar、Andriy Burkov、Pedro Domingos、Ajit Jaokar、Nikita Johnson、Zachary Chase Lipton、Matthew Mayo、Brandon Rohrer、Elena Sharova、Rachel Thomas 和 Daniel Tunkelang 的回答。

这些专家挑选出的关键词包括深度学习的进步、迁移学习、机器学习的局限性、自然语言处理不断变化的现状等等。

深度学习果实即将摘尽?11位大牛谈AI的当下(2018)与未来(2019)

1. Anima Anandkumar:英伟达的 ML 研究主任和加州理工学院的 Bren 讲座教授。

(1) 2018 年机器学习和人工智能的主要进展是什么?

深度学习容易获得的果实几乎已经摘尽」(Low hanging fruits of deep learning have been mostly plucked)。

深度学习的焦点开始从标准的监督学习转向更具挑战性的机器学习问题,如半监督学习、域适应、主动学习和生成模型。GAN 继续受到研究人员的欢迎,他们正在尝试更加艰巨的任务,如照片级图像生成(BigGAN)和视频到视频合成。人们开发了替代的生成模型(例如,神经渲染模型)以在单个网络中组合生成和预测以帮助半监督学习。研究人员将深度学习的应用扩展到许多科学领域,如地震预测、材料科学、蛋白质工程、高能物理和控制系统。在这些情况下,领域知识和约束与学习相结合。例如,为了改善无人机的自主着陆,我们可以学习地面效应模型以校正基础控制器并保证学习稳定,这在控制系统中很重要。

(2) 预测:

人工智能将把模拟和现实联系起来,变得更安全,更具物理真实性。」

我们将看到人们开发新的域适应技术,以便将知识从模拟无缝迁移到现实世界。使用模拟将有助于我们克服数据稀缺性并加快新领域和新问题的学习。使 AI 从模拟到实际数据(Sim2real)将对机器人技术、自动驾驶、医学成像、地震预报等产生重大影响。模拟是解决自动驾驶等安全关键应用中所有可能情况的好方法。内置于复杂模拟器中的知识将以新颖的方式使用,使 AI 更具物理意识、更强大,并能够推广到新的场景。

2. Andriy Burkov:Gartner 机器学习团队的负责人。

这是我作为一名从业者的看法,而不是 Gartner 基于研究的官方声明。

(1) 2018 年机器学习和人工智能的主要发展是什么?

TensorFlow 在学术界输给了 PyTorch。有时谷歌的巨大影响力和能力可能会使市场偏向次优的方向,因为 MapReduce 和随后的 hadoop 狂热已经导致了这种情况。

Deepfakes(以及相似的语音转换模型)粉碎了最值得信赖的信息来源:视频片段。几十年前我们不再相信印刷文字,但直到最近,视频的可信度还是不可动摇。

强化学习以深度学习的形式回归是非常意外和酷的!

Google 致电餐厅并(成功)假装为真正人类的系统是一个里程碑。然而,它引发了许多关于道德和人工智能的问题。

个人助理和聊天机器人很快就达到了极限。他们比以往任何时候都好用,但又不如去年每个人所希望的那么好。

(2) 你认为 2019 年的主要趋势是什么?

我估计每个人都会对今年的 AutoML 进展感到兴奋。但我也预计它会失败(除了一些非常具体和明确定义的用例,如图像识别、机器翻译和文本分类,其中手工制作的特征不是必要或是标准的,原始数据接近于机器期望作为输入,并且数据是丰富的)。

营销自动化:利用成熟的生成对抗网络和变分自编码器,可以生成数千张相同人物或图像的图片,这些图像之间的面部表情或情绪差异很小。根据消费者对这些图片的反应,我们可以制作出最佳的广告活动。

移动设备上的实时语音生成与真实人类无法区分。

自动驾驶的出租车将保持在测试/ PoC 阶段。

3. Pedro Domingos :华盛顿大学计算机科学与工程系的教授。

经过多年的炒作,2018 年变成了对人工智能过度恐惧的一年。听媒体甚至是一些研究人员的言论,你可能会认为机器学习算法是偏见和歧视的垃圾桶,机器人正在接手我们的工作,然后是我们的生活... 不仅仅是谈话:欧洲和加利福尼亚州已经通过了严厉的隐私法,联合国正在就智能武器禁令等进行辩论。公众对人工智能的看法越来越消极,这既危险又不公平。希望 2019 年将看到理智回归。

4. Ajit Jaokar:牛津大学物联网数据科学的首席数据科学家和创始人

2018 年,一些趋势开始起飞。AutoML 是一个,强化学习是一个。这两个新生趋势将在 2019 年大幅扩展。作为我在牛津大学教学的一部分,我认为物联网越来越多地交织在自动驾驶汽车、机器人和智能城市等大型生态系统中。通过与 Dobot 的合作,我见证了一种新的机器人技术,即协作机器人(cobots),这是 2019 年的一个关键趋势。与以前的装配线机器人不同,新的机器人将能够自主并理解情绪。最后,有一个有争议的观点:在 2019 年,我们所知道的数据科学家的角色将倾向于从研究转向产品开发。我认为人工智能与下一代数据产品的创建密切相关。数据科学家的角色将相应改变。

5. Nikita Johnson:RE.WORK 的创始人。

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接