小白上路?工程师转型?应届毕业生?三种“圈外人”的数据科学入行指南

作者:媒体转发 时间:2018-12-16 21:43

字号

数据科学

大数据文摘出品

编译:李雷、罗然、Aileen

许多数据科学职业建议(或求职/面试准备建议)都有类似的问题:受众太宽,建议泛泛。

本文作者深受其害,这些繁多的资料使得不少有抱负的准数据科学家很困惑,到底如何分配时间到他们想进入的领域。

这篇文章中,本文作者将针对三种不同的、想要进入数据科学领域的人群,给出自己的经验,帮助他们迅速有效入行。

虽然没有适合每个人的万能解决方案,但这三类建议值得想转行的你一看。

第1类:新手上路

小白上路?工程师转型?应届毕业生?三种“圈外人”的数据科学入行指南

如果你刚刚进入数据科学领域,请记住这一点:这个领域发展很快,我在这里给出的建议基本上在你工作时已经过时了。能满足2017年招聘岗位要求的建议策略,在如今可能就不满足,而今天的数据科学领域招聘标准与一两年后的标准之间的差异可能更大。

因此,如果你打算在数据科学领域发展事业,并且没有编程经验和STEM(科学Science,科技Technology,工程Engineering,数学Mathematics四门学科英文首字母的缩写)背景,那么这里有一些建议:

首先要保持开放的心态。如果你是一个新手,那么你实际上并不知道什么是数据科学,所以它完全有可能不是你想要的工作领域。请与LinkedIn上的一些数据科学家进行联系,请他们喝咖啡并向他们请教;并关注数据科学播客。要成为数据科学家需要花费大量的时间和精力,如果仅因你自认为驾驭数据科学很酷,然后就一头扎进去,这并不是冒险的好理由。请确保充分了解数据科学中不好的方面,比如数据整理,以及构建数据生产流水线,而这些工作占了数据科学家日常工作的大部分时间。

如果你决定要从事数据科学领域的工作,那太好了!你首先要做的是学习Python。尽快在MOOC(大规模网络公开课平台即慕课)上选择相关的课程项目。当熟悉Python基本用法后,请学习如何使用Jupyter notebooks工具,并选学一些数据科学领域的网络公开课。

如果你是完全从零开始的,一开始就以高级的数据科学职位为目标可能不太好,选择一些入门级的职位比较好,比如数据可视化或数据分析职业的需求量很大,并且市场需求也大。这些岗位的人员通常与数据科学家一起工作,一旦你积累了相关经验,就为今后的胜任更高级的数据科学相关职位奠定了基础。

如何包装个人品牌:如果你已经准备好申请工作,你可能会惊讶地发现个人品牌在数据科学中非常重要。由于你没有任何专业经验,或者没有计算机科学专业的研究生学位,你也许会担心个人亮点不足。但实际上这可能是最大的优势所在:如自学成才的开发人员/数据科学家,这些将成为公司可以利用的快速学习和努力工作的优点。但问题是,你背负着去实现那个形象的重担:这是一座陡峭的山需要你去攀登,但是回报肯定是值得的。

第2类:软件工程

小白上路?工程师转型?应届毕业生?三种“圈外人”的数据科学入行指南

在我遇到的专业数据科学家中约有20%是软件工程师,一方面,他们有从编写程序到形成产品的工作经验,是开发团队中难得的经验人才。另一方面,对于全栈开发人员的需求很多,使得公司比较愿意朝着全栈工程师方向培养软件工程师,即使他们的录用通知上写的职位是“数据科学”。所以你要避免被当作软件工程师而不是数据科学家。

其他一些建议:

首先可以先往更注重后端/数据库的方向上靠。把深化对数据生成线流水线的认识作为良好的开端,可以帮助你建立关键的数据处理技能;当然也可以帮你重塑自己,把自己塑造成一个经验丰富的数据管理者。

机器学习工程可能是更容易过渡到数据科学领域的,因为它和该领域的研究内容最接近。你可以先着手部署模型或将它们集成到现有应用程序,因为这可以充分利用你的现有技能,这是迈出第一步的好方法,反正以后你总是可以投入更多精力到模型开发中的。

为了让招聘人印象深刻,你很可能需要建立机器学习或数据科学项目。那么利用你的软件工程技能,把这些项目集成到可以向招聘人员和技术主管展示的应用程序中。这会特别有效,因为它很直观,并体现了你作为一个全栈数据科学家的潜力。

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接