都是数据科学家,为什么TA薪水比你高?
作者:CQITer小编 时间:2018-12-06 16:44
同样做数据科学,为什么有人赚得多,有人赚的少?为了科学地回答这个问题,Kaggle 进行了一项系统的调查。结果表明,行业、经验、掌握的数据类型等是影响数据科学家薪酬的主要因素。行业是自己选的,经验是自己攒的,这些都没啥好说的。至于数据类型,你会的更高级就赚得越多。
如何提高薪酬?本文作者从 2018 年 Kaggle ML & DS 调查问卷中总结出 124 条「该做」和「不该做」之事。
做什么能为你的数据科学职业生涯加码?很多人已经非常清楚巩固数据科学职业和加薪的重要因素。但我从没有见过一个系统的、基于数据的方法来回答这个问题。所以我想通过建模来解释「哪些因素可以提高数据科学家的市场价值」。有些你可能已经了解,但有些可能真的有助于你加薪呢~
完整研究报告及代码地址:
https://www.kaggle.com/andresionek/what-makes-a-kaggler-valuable
根据数据估计薪酬
我们只能做这种研究,因为 Kaggle 已经发布了其第二次年度机器学习和数据科学调查的数据。该调查于 2018 年 10 月展开,耗时一周,共获得 23859 份回复。结果包括一些原始数据,如什么人在研究数据、不同行业中机器学习的情况、新数据科学家进入该领域的最佳方式。
有了这些数据,我们想了解影响 Kaggler 薪酬的因素(我们把回复调查的人称之为 Kaggler)。我们想让你了解什么对市场更有价值,这样你就可以停止把时间花在投资回报率(ROI)低的事情上,并加速获得更高的报酬。根据这些从数据中提炼出来的见解,我希望你有一天能够像 Babineaux 一样——躺在钱堆上。

Huel Babineaux,《绝命毒师》和《风骚律师》中的角色。图源:AMC
在进入正题之前,我们可以先做一些基本的探索性数据分析(EDA)。首先看一下大家的薪水↓↓

数据:Kaggle 第二次年度机器学习和数据科学调查。图表:作者
薪酬主要集中分布在较低的水平范围内(每年 1 万美元),在 10 万美元左右还有另一个高峰。很多学生也填写了这份调查问卷,看看他们赚多少?

数据:Kaggle 第二次年度机器学习和数据科学调查。图表:作者
不出所料,学生们赚得不多,因为他们还没有正式工作。既然如此,我们可以把学生从数据中剔除并确定收入前 20% 的 Kaggler 薪酬是多少。

数据:Kaggle 第二次年度机器学习和数据科学调查。图表:作者
根据这些数据,我们定义了用于建模的目标变量,如下:
我们将计算一个 Kaggler 年收入超过 10 万美元的概率。
数据科学中的性别不平衡
在继续建模之前,我想告诉你的是,在收入最高的 20%Kaggler 中存在性别不平衡,但是其余的 80% 中不存在这种现象。这意味着男性高管的薪资要高于女性。如下图所示:

数据:Kaggle 第二次年度机器学习和数据科学调查。图表:作者
预测模型
为了创建模型,我们从 29 个问题中提取了 138 个可以解释高薪的特征。经过一定的数据清洗之后,我们运行了 Logistic 回归和随机森林模型。
经过评估,我们发现 Logistic 回归表现更好。该模型在提取特征系数方面也具有优势。这可以帮助我们理解每个特征对(收入最高的 20%Kaggler)最终结果有何贡献。我们做了欠采样、交叉验证及网格搜索,代码见完整版调查报告。
### -- ### -- LogisticRegression -- ### -- ###
MODEL PERFORMANCE ON TEST DATA*
Accuracy: 0.8167438271604939
AUC: 0.8963917030007695
Confusion Matrix:
[[1817 411]
[ 64 300]]
Type 1 error: 0.18447037701974867
Type 2 error: 0.17582417582417584

模型性能:薪水前 20% 和后 80% 的预测分数。数据:Kaggle 第二次年度机器学习和数据科学调查。
帮你加薪的几个方法
选择特征之后,我们的模型总共有 124 个特征。从它们的系数我们总结了几点帮你加薪的建议。
我们模型的截距是 0。这意味着每个人都是从 0 分开始的。接下来你可以在你分数的基础上加分或减分,这取决于你针对每个问题给出的答案。
正系数:系数为正表示肯定的答案有助于你挤进前 20%
负系数:系数为负表示肯定的回答不利于你挤进前 20%

模型系数。数据:Kaggle 第二次年度机器学习和数据科学调查。图表:作者



