分布式事务,原来可以这么玩?

作者:网友投稿 时间:2018-10-29 01:03

字号

多个数据要同时操作,如何保证数据的完整性,以及一致性?

答:事务,是常见的做法。

分布式事务,原来可以这么玩?

举个栗子:

用户下了一个订单,需要修改余额表,订单表,流水表,于是会有类似的伪代码:

start transaction; 

 CURD table t_account;  any Exception rollback; 

 CURD table t_order;      any Exception rollback; 

 CURD table t_flow;        any Exception rollback; 

commit

如果对余额表,订单表,流水表的SQL操作全部成功,则全部提交

如果任何一个出现问题,则全部回滚

事务,以保证数据的完整性以及一致性。

事务的方案会有什么潜在问题?

答:互联网的业务特点,数据量较大,并发量较大,经常使用拆库的方式提升系统的性能。如果进行了拆库,余额、订单、流水可能分布在不同的数据库上,甚至不同的数据库实例上,此时就不能用数据库原生事务来保证数据的一致性了。

高并发易落地的分布式事务,是行业没有很好解决的难题,那怎么办呢?

答:补偿事务是一种常见的实践。

什么是补偿事务?

答:补偿事务,是一种在业务端实施业务逆向操作事务。

举个栗子:

修改余额,事务为:

int Do_AccountT(uid, money){ 

    start transaction; 

         //余额改变money这么多 

         CURD table t_account with money for uid; 

         anyException rollback return NO; 

    commit; 

    return YES; 

  

那么,修改余额,补偿事务可以是:

int Compensate_AccountT(uid, money){ 

         //做一个money的反向操作 

         return Do_AccountT(uid, -1*money){ 

同理,订单操作,事务是:Do_OrderT,新增一个订单;

订单操作,补偿事务是:Compensate_OrderT,删除一个订单。

要保证余额与订单的一致性,伪代码:

// 执行第一个事务 

int flag = Do_AccountT(); 

if(flag=YES){ 

    //第一个事务成功,则执行第二个事务 

    flagDo_OrderT(); 

    if(flag=YES){ 

        // 第二个事务成功,则成功 

        return YES; 

    } 

    else{ 

        // 第二个事务失败,执行第一个事务的补偿事务 

        Compensate_AccountT(); 

    } 

补偿事务有什么缺点?

不同的业务要写不同的补偿事务,不具备通用性;

没有考虑补偿事务的失败;

如果业务流程很复杂,if/else会嵌套非常多层;

画外音:上面的例子还只考虑了余额+订单的一致性,就有2*2=4个分支,如果要考虑余额+订单+流水的一致性,则会有2*2*2=8个if/else分支,复杂性呈指数级增长。

还有其它简易一致性实践么?

答:多个数据库实例上的多个事务,要保证一致性,可以进行“后置提交优化”。

单库是用这样一个大事务保证一致性:

start transaction; 

 CURD table t_account;  any Exception rollback; 

 CURD table t_order;      any Exception rollback; 

 CURD table t_flow;        any Exception rollback; 

commit; 

拆分成了多个库后,大事务会变成三个小事务:

start transaction1; 

         //第一个库事务执行 

         CURD table t_account; any Exception rollback; 

         … 

// 第一个库事务提交 

commit1; 

 

start transaction2; 

         //第二个库事务执行 

         CURD table t_order; any Exception rollback; 

         … 

// 第二个库事务提交 

commit2; 

 

start transaction3; 

         //第三个库事务执行 

         CURD table t_flow; any Exception rollback; 

         … 

// 第三个库事务提交 

commit3; 

画外音:再次提醒,这三个事务发生在三个库,甚至3个不同实例的数据库上。

一个事务,分成执行与提交两个阶段:

执行(CURD)的时间很长

提交(commit)的执行很快

于是整个执行过程的时间轴如下:

分布式事务,原来可以这么玩?

第一个事务执行200ms,提交1ms;

第二个事务执行120ms,提交1ms;

第三个事务执行80ms,提交1ms;

在什么时候,会出现不一致?

答:第一个事务成功提交之后,最后一个事务成功提交之前,如果出现问题(例如服务器重启,数据库异常等),都可能导致数据不一致。

分布式事务,原来可以这么玩?

画外音:如上图,最后202ms内出现异常,会出现不一致。

什么是后置提交优化?

答:如果改变事务执行与提交的时序,变成事务先执行,最后一起提交。

分布式事务,原来可以这么玩?

第一个事务执行200ms,第二个事务执行120ms,第三个事务执行80ms;

第一个事务提交1ms,第二个事务提交1ms,第三个事务提交1ms;

后置提交优化后,在什么时候,会出现不一致?

责任编辑:CQITer新闻报料:400-888-8888   本站原创,未经授权不得转载
关键词 >>分布式 事务 数据
继续阅读
热新闻
推荐
关于我们联系我们免责声明隐私政策 友情链接